Longitudinal four-dimensional mapping of subcortical anatomy in human development.

TitleLongitudinal four-dimensional mapping of subcortical anatomy in human development.
Publication TypeJournal Article
Year of Publication2014
AuthorsRaznahan A, Shaw PW, Lerch JP, Clasen LS, Greenstein D, Berman R, Pipitone J, M Chakravarty M, Giedd JN
JournalProc Natl Acad Sci U S A
Volume111
Issue4
Pagination1592-7
Date Published2014 Jan 28
ISSN1091-6490
KeywordsAdolescent, Adult, Brain Mapping, Cerebral Cortex, Child, Child, Preschool, Female, Humans, Magnetic Resonance Imaging, Male, Young Adult
Abstract

Growing access to large-scale longitudinal structural neuroimaging data has fundamentally altered our understanding of cortical development en route to human adulthood, with consequences for basic science, medicine, and public policy. In striking contrast, basic anatomical development of subcortical structures such as the striatum, pallidum, and thalamus has remained poorly described--despite these evolutionarily ancient structures being both intimate working partners of the cortical sheet and critical to diverse developmentally emergent skills and disorders. Here, to begin addressing this disparity, we apply methods for the measurement of subcortical volume and shape to 1,171 longitudinally acquired structural magnetic resonance imaging brain scans from 618 typically developing males and females aged 5-25 y. We show that the striatum, pallidum, and thalamus each follow curvilinear trajectories of volume change, which, for the striatum and thalamus, peak after cortical volume has already begun to decline and show a relative delay in males. Four-dimensional mapping of subcortical shape reveals that (i) striatal, pallidal, and thalamic domains linked to specific fronto-parietal association cortices contract with age whereas other subcortical territories expand, and (ii) each structure harbors hotspots of sexually dimorphic change over adolescence--with relevance for sex-biased mental disorders emerging in youth. By establishing the developmental dynamism, spatial heterochonicity, and sexual dimorphism of human subcortical maturation, these data bring our spatiotemporal understanding of subcortical development closer to that of the cortex--allowing evolutionary, basic, and clinical neuroscience to be conducted within a more comprehensive developmental framework.

DOI10.1073/pnas.1316911111
Alternate JournalProc. Natl. Acad. Sci. U.S.A.
PubMed ID24474784
PubMed Central IDPMC3910572

McGill Logo

CIUSSS ouest montreal logo

 



  • Douglas Hospital
  • Dobell Pavillion
  • Brain imaging centre