A rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study.

TitleA rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study.
Publication TypeJournal Article
Year of Publication2014
AuthorsKim H-S, Kim D, Kim RGyung, Kim J-M, Chung E, Neto PR, Lee M-C, Kim H-I
JournalJ Cereb Blood Flow Metab
Volume34
Issue4
Pagination683-9
Date Published2014 Apr
ISSN1559-7016
KeywordsAnimals, Behavior, Animal, Brain Infarction, Disease Models, Animal, Fluorodeoxyglucose F18, Glucose, Internal Capsule, Intracranial Thrombosis, Male, Motor Activity, Movement Disorders, Positron-Emission Tomography, Rats, Rats, Sprague-Dawley, Recovery of Function
Abstract

We present a new method for inducing a circumscribed subcortical capsular infarct (SCI), which imposes a persistent motor impairment in rats. Photothrombotic destruction of the internal capsule (IC) was conducted in Sprague Dawley rats (male; n=38). The motor performance of all animals was assessed using forelimb placing, forelimb use asymmetry, and the single pellet reaching test. On the basis of the degree of motor recovery, rats were subdivided into either the poor recovery group (PRG) or the moderate recovery group (MRG). Imaging assessment of the impact of SCI on brain metabolism was performed using 2-deoxy-2-[(18)F]-fluoro-D-glucose ([(18)F]-FDG) microPET (positron emission tomography). Photothrombotic lesioning using low light energy selectively disrupted circumscribed capsular fibers. The MRG showed recovery of motor performance after 1 week, but the PRG showed a persistent motor impairment for >3 weeks. Damage to the posterior limb of the IC (PLIC) is more effective for producing a severe motor deficit. Analysis of PET data revealed decreased regional glucose metabolism in the ipsilesional motor and bilateral sensory cortex and increased metabolism in the contralesional motor cortex and bilateral hippocampus during the early recovery period after SCI. Behavioral, histologic, and functional imaging findings support the usefulness of this novel SCI rat model for investigating motor recovery.

DOI10.1038/jcbfm.2014.2
Alternate JournalJ. Cereb. Blood Flow Metab.
PubMed ID24473479
PubMed Central IDPMC3982097