The impact of the Siemens Tim Trio to Prisma upgrade and the addition of volumetric navigators on cortical thickness, structure volume, and H-MRS indices: An MRI reliability study with implications for longitudinal study designs.

TitleThe impact of the Siemens Tim Trio to Prisma upgrade and the addition of volumetric navigators on cortical thickness, structure volume, and H-MRS indices: An MRI reliability study with implications for longitudinal study designs.
Publication TypeJournal Article
Year of Publication2021
AuthorsPlitman E, Bussy A, Valiquette V, Salaciak A, Patel R, Cupo L, Béland M-L, Tullo S, Tardif CLucas, Maria Rajah N, Near J, Devenyi GA, Chakravarty MM
JournalNeuroimage
Volume238
Pagination118172
Date Published2021 09
ISSN1095-9572
KeywordsBrain, Brain Cortical Thickness, Humans, Longitudinal Studies, Magnetic Resonance Imaging, Neuroimaging, Research Design
Abstract

Many magnetic resonance imaging (MRI) measures are being studied longitudinally to explore topics such as biomarker detection and clinical staging. A pertinent concern to longitudinal work is MRI scanner upgrades. When upgrades occur during the course of a longitudinal MRI neuroimaging investigation, there may be an impact on the compatibility of pre- and post-upgrade measures. Similarly, subject motion is another issue that may be detrimental to MRI work and embedding volumetric navigators (vNavs) within acquisition sequences has emerged as a technique that allows for prospective motion correction. Our research group recently underwent an upgrade from a Siemens MAGNETOM 3T Tim Trio system to a Siemens MAGNETOM 3T Prisma Fit system. The goals of the current work were to: 1) investigate the impact of this upgrade on commonly used structural imaging measures and proton magnetic resonance spectroscopy indices ("Prisma Upgrade protocol") and 2) examine structural imaging measures in a sequence with vNavs alongside a standard acquisition sequence ("vNav protocol"). While high reliability was observed for most of the investigated MRI outputs, suboptimal reliability was observed for certain indices. Across the scanner upgrade, increases in frontal, temporal, and cingulate cortical thickness (CT) and thalamus volume, along with decreases in parietal CT and amygdala, globus pallidus, hippocampus, and striatum volumes, were observed. No significant impact of the upgrade was found in H-MRS analyses. Further, CT estimates were found to be larger in MPRAGE acquisitions compared to vNav-MPRAGE acquisitions mainly within temporal areas, while the opposite was found mostly in parietal brain regions. The results from this work should be considered in longitudinal study designs and comparable prospective motion correction investigations are warranted in cases of marked head movement.

DOI10.1016/j.neuroimage.2021.118172
Alternate JournalNeuroimage
PubMed ID34082116