Early-in-life neuroanatomical and behavioural trajectories in a triple transgenic model of Alzheimer's disease.

TitleEarly-in-life neuroanatomical and behavioural trajectories in a triple transgenic model of Alzheimer's disease.
Publication TypeJournal Article
Year of Publication2018
AuthorsKong V, Devenyi GA, Gallino D, Ayranci G, Germann J, Rollins C, M Chakravarty M
JournalBrain Struct Funct
Date Published2018 Jun 13
ISSN1863-2661
Abstract

Animal models of Alzheimer's disease (AD) can be used to determine the progressive neurodegeneration characteristics of AD in vivo using magnetic resonance imaging (MRI). Given the need for therapeutic interventions before the onset of frank AD, it is critical to examine if AD models demonstrate neuroanatomical remodeling in an equivalent preclinical phase. This manuscript examines the trajectories of brain and behavioural changes in the Triple transgenic mouse model (3xTg) prior to the development of AD-like behaviours. The 3xTg mimics both β-amyloid plaques and neurofibrillary tangles through three mutations associated with familial AD, namely: PS1, APP, and tau transgenes. We performed detailed investigation using longitudinal structural MRI at 6, 8, 12, 16, 20, and 24 weeks old to assess neuroanatomical changes using volumetric and deformation-based analyses. Learning- and memory-related behaviour were assessed through the Morris water maze at 9, 17, and 25 weeks of age. There was the absence of major memory deficits with the notable exception of water maze conducted at 17 weeks old, where 3xTg group spent significantly less time in the quadrant of interest in the probe trial. Through volumetric and deformation-based analyses, we observed relative decrease over time in the 3xTg group in the third ventricle, piriform cortex, fornix, and fimbria relative to the control group. We also observed decreases over time in the control mice in the hippocampus, entorhinal cortex, cerebellum, and olfactory bulb. In many of these cases, we note a delay in the attainment of peak volume in the 3xTgs relative to the control group, suggesting a possible neurodevelopmental and maturational delay given the likely over-expression of AD-related pathology from birth. Importantly, neuroanatomical alterations are observed prior to the manifestation of AD-like behaviours, suggesting that mutated amyloid and tau are, indeed, sufficient to cause changes in the neuroanatomy in 3xTg mice, but potentially insufficient to be responsible for behavioural changes in the earlier stages of life.

DOI10.1007/s00429-018-1691-4
Alternate JournalBrain Struct Funct
PubMed ID29948190

McGill Logo

CIUSSS ouest montreal logo

 



  • Douglas Hospital
  • Dobell Pavillion
  • Brain imaging centre